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v PP . For the most general case of waveguides filled with lossy inhomo-

geneous and anisotropic materials, the problem is governed by the
following vector wave equations:
V x (i, 'V x E) — kié,
V x (&Y x H) = k2ji,

E=0
H =0, ki = w2€0/m 1)

Analysis of General Lossy Inhomogeneous and

Anisotropic Waveguides by the Finite-Element whereé, and i, are the relative electric permittivity and magnetic
Method (FEM) Using Edge Elements permeability tensors, respectively,
i o p ~ Exx Exy Erz
Luis Nufo, Juan V. Balbastre, éttor Castiaé 2= o 24y 2o
Ezx E:y Exy
Abstract—Several finite element formulations based on edge elements R Haz  Hay  Haz
have been developed in recent years, avoiding the appearance of spurious fr = |lyz  Myy  Hyz |- 2
modes in waveguides. However, no formulation of this kind dealing few  floy  fhes

with general lossy inhomogeneous and anisotropic waveguides has been

found in the literature. In this paper, a new finite element scheme for ~ The boundary conditions for electric or magnetic walls are, re-
the most general linear waveguides has been derived from vector wave spectively,

equations via a Galerkin procedure. In this formulation, triangular and

guadrilateral edge elements have been used in order to avoid the spurious h X E|C =0

solutions. Furthermore, the final eigensystem involves only very sparse

matrices, thus allowing important savings in time and memory.

Index Terms—Anisotropic waveguides, edge elements, finite-element i x Hle =0. @)

method.
Assuming an exponential dependence of the fields with zthe

coordinate
. INTRODUCTION

- . . E :E’D(L/':'/ y)ef“/"’«
The finite-element method (FEM) has been widely used in elec- T e _ y
tromagnetics for the last two decades. Nevertheless, the earlier finite H = Ho(x, y)e ", v=atis “)
element analyses had the drawback of the appearance of spurigHa defining the differential operators
modes, leading to a considerable effort to avoid such nonphysical

solutions [1}-[6]. p=2i1 25 s

More recently, two conditions have been found as requirements to Jx Jy
avoid spurious solutions [7]: compatibility to guarantee the continuity D= K2 it 9 PRI )
of the tangential components of the fields and unisolvence to correctly ox dy ~ }

model the curl operator null-space. . .
- . . leads to very elegant and compact expressions after applying the
In the last years, several finite element formulations using vector . . -
glerkln procedure to the waveguide secti®n

interpolation have been developed [8]-[12]. Those vectorial elemen
satisfy both compatibility and unisolvence conditions so they do not [y 7y, amt =
present spurious modes. However, in the formulations of this kind S(D x Fo) - (i D x Eo)dS

found in the literature only lossless diagonal anisotropic waveguides D T B
have been considered. In this paper, the authors present a new edge — ko /L Fo-(&-Eo)dS =0 (6a)
element formulation valid for the most general lossy inhomogeneous e - .
and anisotropic linear waveguides. // (D x Go)-(¢,°D x Ho)dS
. . . . . S
First, a weak formulation of vector wave equations is obtained. T .
This integral equation is valid for general anisotropic waveguides — kg // Go - (firHp)dS =0 (6b)
S

bounded by perfect electric or magnetic walls. Then, this integral

equation is discretized following the FEM, obtaining a very sparsgith £, and G being the test functions, which satisfy the same
eigensystem where the eigenvalue is the propagation constant, attBHlIndary conditions a&, and Ho, respectively.
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interpolated with the first-order Lagrange nodal functions in order to /Ko

avoid spurious solutions: B/Ko

vto0 g °e7

Eo=|VT o0 {f} = P'E

T E:

0 N 05+
vt ], '

F=|v" o {?} = P'F @
0 NT|L~ 04 L

where the dots indicate the values of the functions at edges or nodes
and the expressions for the interpolating functidéhsy’, and NV can

be found in many sources (see [9]). So, the differential operationso‘ T
involved in (6a) give

,YVT N;;[ . 02+
B i NI B g
DxEy=| =AU -N, Bl = Q' F
vi-u; 0
-T T
—A~V N . 1
L 7‘71‘ z},[ B . 0.1 ;
DxFko=| AU = =Ny || |=Q@F 8 ; x MODE 1 Hayata etal
Vi - U,j 0 N 4»"* + MODE 2 Hayata et al.
A —— 0
with the subindices: andy in the interpolating functions standing for
. . . . . 2 4 5 6 7 8 9 10 Ko*w
differentiation with respect to these variables. After some algebraic
manipulations the following eigensystem is obtained: Fig. 1. Rectangular anisotropic homogeneous waveguide.
’}"2 A[ 1 + ’yf\/[g —|— J\[ 3 *yf\/[ 4 —|— A[r, E k 2 JV] 17\72 E _ 0
~Mes + Mz My TN, Ny - IV. NUMERICAL RESULTS
9) In this section, numerical results of several anisotropic waveguides

are presented, using first-order triangular and quadrilateral elements.
where the submatrices involve integrals of the interpolating functiomrst, a rectangular waveguide is considered (see Fig. 1), filled with
and their derivatives (see the Appendix) and the size of the eigen-

system is reduced by introducing the boundary conditions. On the 18.5875—72.57  —3.8841451.0219 0
other hand, this eigensystem can be transformed in such a way that | 35414 1.0219  14.1025—1.39 0 o
~ becomes the eigenvalue 0 0 11.86—j0.80
42 {1‘31 8} E+~ H? ‘éﬂ E The propagation characteristics of the first two modes, obtained
) 6 ) using an eigensystem of siZ€ = 440, agree very well with those
n {;1/[3 - kg_/\il Ms — kgA;z } E=o. (10) presented in [1] . o .
Mz — kGNs  Ms — kg Ny Next, the shielded microstrip line of Fig. 2 has been analyzed,

o . . . with the substrate, = =. = 9.4¢0, ¢, = 11.65¢, and N = 275
It is interesting to point out that these eigensystems are completglyi nowns. The propagation constant of the first two modes are

free of spu_rious solutions and the matrices invplved are highly Spa_rﬁ?presented and compared with [9], showing a very good agreement.
thus allowing a great memory and time reduction. The transformatlonAﬁerwardS’ the ferrite-loaded waveguide of Fig. 3 was solved with
of (10) into a generalized sparse eigensystem can be achieved si

: ‘ e - MPIL 560 and compared with [4], with both results being seen as very
by introducingA = 1/~, E, = E//X:

similar. The ferrite slab characteristics were

My — k2N, Ms — k2N, 0] [E; £ =10¢0
MM: —k3Ns Ms—FENy 0] |E. 0.875 0 —j;0.375
0 0 I||FE: p=| 0 1 0 0.
My My, M, [E j0.375 0 0.875
+|Ms 0 0 ||B.|=0 (11)

As an example of curvilinear boundaries, the propagation constant
of the first three modes has been computed for the elliptical wave-
guide of Fig. 4, the first two modes being compared with [4]. The
electromagnetic properties of the materials were

-I 0 0 E,

where it is necessary to ignore as many eigenvalues0 asE. has
unknowns, corresponding to the nonvalid solutions

. g1 =100
E, =0 0.875 0 —j0.375
Er=—-M'M,E. (12) fu=| 0 1 0 Ho
j0.375 0 0.875
introduced in the transformation process. These nonvalid solutions 225 0 0
must not be confused with any kind of spurious modes since their o= 0 225 0 |
origin is an algebraic transformation for reducing the order of an 0 0 15

eigensystem, being perfectly defined and located. 2 = fio-
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Fig. 2. Anisotropic shielded microstrip (dimensions in millimeters).
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Fig. 3. Ferrite-loaded rectangular waveguide.

Finally, to provide a very general example, the authors have
analyzed a trapezoidal microstrip line with three anisotropic ma-
terials. The propagation characteristics are shown in Fig. 5(a) and
the transversal components of the electric and magnetic fields for
the second mode are plotted in Fig. 5(b). The materials 1 and 2
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Fig. 4. Elliptical waveguide filled with two anisotropic materials.
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in the waveguide are the same as in the previous example, while

E3x — €32 — (11.86—_]’0.375)60, 23y = (20.83—j3.16)€0,ﬂ3 = Hlo.

V. CONCLUSION

Analysis of general lossy inhomogeneous and anisotropic waveg-
uides has been carried out by the FEM using vector basis functions¥dth their axial components being interpolated with Lagrange nodal
the transversal components of the fields to avoid spurious solutiobasis functions. The matrices involved in the final eigensystem are ex-

(b)

Fig. 5. Anisotropic and inhomogeneous trapezoidal microstrip line: (a) ge-
ometry and propagation constants and (b) transversal electric and magnetic
fields for the second mode.
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el - " Some Characteristics of Ridge-Trough Waveguide
Wyl = (") V= (A7) U (A10) .
w —(A_l)hrVT _ (A—i)ZyUT (A11) Debatosh Guha and Pradip Kumar Saha
Wh =@ . (v —Uy)) (A12)
Wyz =(j h! )y/(yT — UT) (A13) Abstract—A single-ridged waveguide with a symmetrical longitudinal
1 T T trough below the ridge, designated as a ridge-trough waveguide (RTW)
W~2 =i )= (Ve =0, ) (Al4)  has been recently proposed as a wafer probe. The authors have theo-
L _ 1 Afl ;T retically calculated the cutoff, bandwidth, and impedance characteristics
113 (a~ )er — (i )ayNe (A15) of this modified single-ridged waveguide in two different configurations
W, y3 =(p l)yrA — () NE (A16) using the Ritz—Galerkin technique and different domain decompositions.
o T . T The results indicate that a RTW can be a low impedance broad-band
Wh=(i")N, — (A7) N, (A7) structure.
Finally, Index Terms—tow impedance broad-band waveguide.
AT . ;T ;T , ;T ,T
M= / Uaal™ + 20y V) + ViU + 20, VIS . INTRODUCTION
s
(A18) In recent years microwave researchers have been paying attention
) o T to developing transitions between the coplanar waveguide (CPW)
Ny = «:UN" 4+2,.VN")dS (A19) ] L . .- -
and other microwave transmission media for efficient utilization of
. } p o some of the advantages of the CPW (one of which is its suitability
Ns = // N(e:U" +2.,V7)dS (A20) " in the design of microwave wafer probes [1]). A few rectangular
i - . waveguides to CPW transitions have been reported which utilize
Ny = // £.:NN" dS. (A21) finline transitions [2], [3], modified ridged waveguides [4], [5], and
° some other configurations [6], [7].
REFERENCES Of these structures, the ridge-trough waveguide (RTW) [5] has

attracted the authors’ attention, prompting them to analyze rectangular
[1] K. Hayata, K. Miura, and M. Koshiba, “Full vectorial finite elementwaveguides with ridges and shaped septa which promise broad-
formalism for lossy anisotropic waveguidesEEE Trans. Microwave
Theory Tech.yol. 37, pp. 875-883, May 1989. Manuscript received August 22, 1995; revised November 21, 1996.
[2] K. D. Paulsen and D. R. Lynch, “Elimination of vector parasites in finite The authors are with the Institute of Radio Physics and Electronics,
element Maxwell solutions,l[EEE Trans. Microwave Theory Teclhgl.  University of Calcutta, 700 009 Calcutta, India.
39, pp. 395-404, Mar. 1991. Publisher Item Identifier S 0018-9480(97)01714-6.

0018-9480/97$10.00 1997 IEEE



