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Analysis of General Lossy Inhomogeneous and
Anisotropic Waveguides by the Finite-Element

Method (FEM) Using Edge Elements

Luis Nuño, Juan V. Balbastre, H́ector Castãné

Abstract—Several finite element formulations based on edge elements
have been developed in recent years, avoiding the appearance of spurious
modes in waveguides. However, no formulation of this kind dealing
with general lossy inhomogeneous and anisotropic waveguides has been
found in the literature. In this paper, a new finite element scheme for
the most general linear waveguides has been derived from vector wave
equations via a Galerkin procedure. In this formulation, triangular and
quadrilateral edge elements have been used in order to avoid the spurious
solutions. Furthermore, the final eigensystem involves only very sparse
matrices, thus allowing important savings in time and memory.

Index Terms—Anisotropic waveguides, edge elements, finite-element
method.

I. INTRODUCTION

The finite-element method (FEM) has been widely used in elec-
tromagnetics for the last two decades. Nevertheless, the earlier finite
element analyses had the drawback of the appearance of spurious
modes, leading to a considerable effort to avoid such nonphysical
solutions [1]–[6].

More recently, two conditions have been found as requirements to
avoid spurious solutions [7]: compatibility to guarantee the continuity
of the tangential components of the fields and unisolvence to correctly
model the curl operator null-space.

In the last years, several finite element formulations using vectorial
interpolation have been developed [8]–[12]. Those vectorial elements
satisfy both compatibility and unisolvence conditions so they do not
present spurious modes. However, in the formulations of this kind
found in the literature only lossless diagonal anisotropic waveguides
have been considered. In this paper, the authors present a new edge
element formulation valid for the most general lossy inhomogeneous
and anisotropic linear waveguides.

First, a weak formulation of vector wave equations is obtained.
This integral equation is valid for general anisotropic waveguides
bounded by perfect electric or magnetic walls. Then, this integral
equation is discretized following the FEM, obtaining a very sparse
eigensystem where the eigenvalue is the propagation constant, attain-
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ing an important reduction in memory and central processing unit
(CPU) time.

II. WEAK FORMULATION

For the most general case of waveguides filled with lossy inhomo-
geneous and anisotropic materials, the problem is governed by the
following vector wave equations:
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where "̂r and �̂r are the relative electric permittivity and magnetic
permeability tensors, respectively,
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The boundary conditions for electric or magnetic walls are, re-
spectively,
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Assuming an exponential dependence of the fields with thez
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leads to very elegant and compact expressions after applying the
Galerkin procedure to the waveguide sectionS:
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with ~F0 and ~G0 being the test functions, which satisfy the same
boundary conditions as~E0 and ~H0, respectively.

III. FINITE ELEMENT SCHEME

Because of the dual form of (6), only the finite element scheme
for the electric field derived from (6a) will be presented. The
transversal components of~E0 and ~F0 will be interpolated with the
first-order vector edge functions while their axial components will be
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interpolated with the first-order Lagrange nodal functions in order to
avoid spurious solutions:
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where the dots indicate the values of the functions at edges or nodes
and the expressions for the interpolating functionsU , V , andN can
be found in many sources (see [9]). So, the differential operations
involved in (6a) give
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with the subindicesx andy in the interpolating functions standing for
differentiation with respect to these variables. After some algebraic
manipulations the following eigensystem is obtained:
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where the submatrices involve integrals of the interpolating functions
and their derivatives (see the Appendix) and the size of the eigen-
system is reduced by introducing the boundary conditions. On the
other hand, this eigensystem can be transformed in such a way that
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It is interesting to point out that these eigensystems are completely
free of spurious solutions and the matrices involved are highly sparse,
thus allowing a great memory and time reduction. The transformation
of (10) into a generalized sparse eigensystem can be achieved simply
by introducing� = 1=
, Et =

_Et=�:
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where it is necessary to ignore as many eigenvalues� = 0 as _Ez has
unknowns, corresponding to the nonvalid solutions
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1 M4
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introduced in the transformation process. These nonvalid solutions
must not be confused with any kind of spurious modes since their
origin is an algebraic transformation for reducing the order of an
eigensystem, being perfectly defined and located.

Fig. 1. Rectangular anisotropic homogeneous waveguide.

IV. NUMERICAL RESULTS

In this section, numerical results of several anisotropic waveguides
are presented, using first-order triangular and quadrilateral elements.
First, a rectangular waveguide is considered (see Fig. 1), filled with
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The propagation characteristics of the first two modes, obtained
using an eigensystem of sizeN = 440, agree very well with those
presented in [1].

Next, the shielded microstrip line of Fig. 2 has been analyzed,
with the substrate"x = "z = 9:4"0, "y = 11:6"0, andN = 275

unknowns. The propagation constant of the first two modes are
represented and compared with [9], showing a very good agreement.

Afterwards, the ferrite-loaded waveguide of Fig. 3 was solved with
N = 560 and compared with [4], with both results being seen as very
similar. The ferrite slab characteristics were
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As an example of curvilinear boundaries, the propagation constant
of the first three modes has been computed for the elliptical wave-
guide of Fig. 4, the first two modes being compared with [4]. The
electromagnetic properties of the materials were
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Fig. 2. Anisotropic shielded microstrip (dimensions in millimeters).

Fig. 3. Ferrite-loaded rectangular waveguide.

Finally, to provide a very general example, the authors have
analyzed a trapezoidal microstrip line with three anisotropic ma-
terials. The propagation characteristics are shown in Fig. 5(a) and
the transversal components of the electric and magnetic fields for
the second mode are plotted in Fig. 5(b). The materials 1 and 2
in the waveguide are the same as in the previous example, while
"3x = "3z = (11:86�j0:375)"0, "3y = (20:83�j3:16)"0,�3 = �0.

V. CONCLUSION

Analysis of general lossy inhomogeneous and anisotropic waveg-
uides has been carried out by the FEM using vector basis functions for
the transversal components of the fields to avoid spurious solutions,

Fig. 4. Elliptical waveguide filled with two anisotropic materials.

(a)

(b)

Fig. 5. Anisotropic and inhomogeneous trapezoidal microstrip line: (a) ge-
ometry and propagation constants and (b) transversal electric and magnetic
fields for the second mode.

with their axial components being interpolated with Lagrange nodal
basis functions. The matrices involved in the final eigensystem are ex-
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tremely sparse, thus allowing a very high time and memory efficiency.
The number of examples presented show a very good agreement
with previous studies and guarantee the general applicability of the
method. Finally, the last example is intended to serve as a reference
for later analyses.

APPENDIX

Definition of the submatrices involved in (9):
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Some Characteristics of Ridge-Trough Waveguide

Debatosh Guha and Pradip Kumar Saha

Abstract—A single-ridged waveguide with a symmetrical longitudinal
trough below the ridge, designated as a ridge-trough waveguide (RTW)
has been recently proposed as a wafer probe. The authors have theo-
retically calculated the cutoff, bandwidth, and impedance characteristics
of this modified single-ridged waveguide in two different configurations
using the Ritz–Galerkin technique and different domain decompositions.
The results indicate that a RTW can be a low impedance broad-band
structure.

Index Terms—Low impedance broad-band waveguide.

I. INTRODUCTION

In recent years microwave researchers have been paying attention
to developing transitions between the coplanar waveguide (CPW)
and other microwave transmission media for efficient utilization of
some of the advantages of the CPW (one of which is its suitability
in the design of microwave wafer probes [1]). A few rectangular
waveguides to CPW transitions have been reported which utilize
finline transitions [2], [3], modified ridged waveguides [4], [5], and
some other configurations [6], [7].

Of these structures, the ridge-trough waveguide (RTW) [5] has
attracted the authors’ attention, prompting them to analyze rectangular
waveguides with ridges and shaped septa which promise broad-
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